
ACTIVE FILTERS   

An electric filter is often a frequency-selective circuit that passes a specified band of frequencies 

and blocks or attenuates signals of frequencies outside this band. Filters may be classified in a 

number of ways:  

1. Analog or digital  

2. Passive or active  

3. Audio (AF) or radio frequency (RF)  

Analog filters are designed to process analog signals, while digital filters process analog signals 

using digital techniques. Depending on the type of elements used in their construction, filters 

may be classified as passive or active.  

Elements used in passive filters are resistors, capacitors, and inductors. Active filters, on the 

other hand, employ transistors or op-amps in addition to the resistors and capacitors. The type of 

element used dictates the operating frequency range of the filter.  

For example, RC filters are commonly used for audio or low- frequency operation, whereas LC 

or crystal filters are employed at RF or high –frequencies. Especially because of their high Q 

value (figure of merit), the crystal provide more stable operation at higher frequencies.  

   

An active filter offers the following advantages over a passive filter:  

1. Gain and frequency adjustment flexibility. Since the op-amp is capable of providing a gain, 

the input signal is not attenuated as it is in a passive filter. In addition, the active filter is easier to 

tune or adjust.  

2. No loading prob1em.Because of the high input resistance and low output resistance of the op-

amp, the active filter does not cause loading of the source or load. 

3. Cost. Typically, active filters are more economical than passive filters. This is because of the 

variety of cheaper op-amps and the absence of inductors.  

 

The most commonly used filters are these:  

1. Low-pass filter  

2. High-pass filter  

3. Band-pass filter  

4. Band-reject filter  

5. All-pass filter  

 

 

 

 

 

 

 

 



 
 

 

 



 

  

Fig. 8-1 shows the frequency response characteristics of the five types of filters. The ideal 

response is shown by dashed curves, while the solid lines indicate the practical filter response. A 

low-pass filter has a constant gain from 0 Hz to a high cutoff frequency fH. Therefore, the 

bandwidth is also fH.  

At fH the gain is down by 3 dB; after that (f> fH) it decreases with the increase in input 

frequency. The frequencies between 0 Hz and fH are known as the passband frequencies, whereas 

the range of frequencies, those beyond fH that are attenuated includes the stopband frequencies.  

   

Fig. 8-1(a) shows the frequency response of the low-pass filter. As indicated by the dashed line, 

an ideal filter has a zero loss in its passband and infinite loss in its stopband. Unfortunately, ideal 

filter response is not practical because linear networks cannot produce the discontinuities. 

However, it is possible to obtain a practical response that approximates the ideal response by 

using special design techniques, as well as precision component values and high-speed op-amps.  

Butterworth, Chebyshev, and Cauer filters are some of the most commonly used practical filters 

that approximate the ideal response. The key characteristic of the Butterworth filter is that it has 

a flat passband as well as stopband. For this reason, it is sometimes called a flat-flat filter.  

The Chebyshev filter has a ripple passband and flat stopband, i.e. the Cauer filter has a ripple 

passband and a ripple stopband. Generally, the Cauer filter gives the best stopband response 

among the three. Because of their simplicity of design, the low-pass and high-pass Butterworth 

filters are discussed here.  

Figure 8-1(b) shows a high-pass filter with a stopband 0 <f < fL and a passband f>fL . fL is the 

low cutoff frequency, and f is the operating frequency. A band-pass filter has a passband 

between two cutoff frequencies fH and fL, where fH > fL and two stop-bands: 0 <f <fL and  

f >fH. The bandwidth of the band- pass filter, therefore, is equal to fH -fL. The band-reject filter 

performs exactly opposite to the band-pass; that is, it has a band-stop between two cutoff 

frequencies fH and fL and two passbands: 0 <f < fL and f> fH. The band-reject is also called a 

band-stop or band-elimination filter. The frequency responses of band- pass and band-reject 

filters are shown in Figure 8-1(c) and (d), respectively. In these figures, fC is called the center 

frequency since it is approximately at the center of the passband or stopband.  

 

Fig. 8.1(e) sows the phase shift between input and output voltages of an all-pass filter. This filter 

passes all frequencies equally well; that is, output and input voltages equal in amplitude for all 

frequencies, with the phase shift between the two a function of frequency. The highest frequency 

up to which the input and output amplitudes remain equal is dependent on the unity gain 

bandwidth of the op-amp. (At this frequency, however, the phase shift between the input and 

output is maximum. 



The rate at which the gain of the filter changes in the stopband is determined by the order of the 

filter. For example, for the first order low-pass filter the gain-rolls-off at the rate of 20 dB/decade 

in the stopband, that is, for f>fH; on the other hand, for the second-order low-pass filter the roll-

off rate is 40 dB/decade and so on. By contrast, for the first-order high-pass filter the gain 

increases at the rate of 20 dB/decade in the stopband, that is, until f=fL; the increase is 

40dB/decade for the second-order high-pass filter;  

FIRST-ORDER LOW-PASS BUTTER WORTH FILTER 

Fig. 8-2 shows a first-order low-pass Butterworth filter that uses an RC network for filtering. 

Note that the op-amp is used in the non-inverting configuration; hence it does not load down the 

RC network. Resistors R1 and RF determine the gain of the filter. 

According to the voltage-divider rule, the voltage at the non-inverting terminal (across capacitor 

C) is  

 

 

 

 

 

 



 

The gain magnitude and phase angle equations of the low-pass filter can be obtained by 

converting Equation (1) into its equivalent polar form, as follows:  

 

Where φ is the phase angle in degrees.  

The operation of the low-pass filter can be verified from the gain magnitude equation, (2):  

 

 

 
 

 

 



Filter Design 

A low-pass filter can be designed by implementing the foI1owng steps:  

1. Choose a value of high cutoff frequency fH.  

2. Select a value of C less than or equal to 1 µF. Mylar or tantalum capacitors are 

recommended for better performance.  

3. Calculate the value of R using  

 

  

      4. Finally, select values of R1 and RF dependent on the desired passband gain AF using  

 

Frequency Scaling  

Once a filter designed; there may sometimes be a need to change its cutoff frequency. The 

procedure used to convert an original cutoff frequency fH to a new cutoff frequency f’H is called 

frequency scaling. Frequency scaling is accomplished as follows. To change a high cutoff 

frequency, multiple R or C. but not both, by the ratio of the original cutoff frequency to the new 

cutoff frequency.  

 

 

 

SECOND-ORDER LOW-PASS BUTTER WORTH FILTER  

A stop-band response having a 40-dB/decade roll-off is obtained with the second order low-pass 

filter. A first-order low-pass filter can be converted into a second order type simply by using an 

additional RC network, as shown in Fig. 8-4.  

 

 

 

 

 



 

Second-order filters are important because higher-order filters can be designed using them. The 

gain of the second-order filter is set by R1 and RF, while the high cutoff frequency fH is 

determined by R2, C2, R3, and C3, as follows:  

 

Furthermore, for a second-order low-pass Butterworth response, the voltage gain magnitude 

equation is  

 

 



 

FIRST-ORDER HIGH-PASS BUITERWORTH FILTER  

 

High-pass filters are often formed simply by interchanging frequency-determining resistors and 

capacitors in low-pass filters. That is, a first-order high-pass filter is formed from a first-order 

low-pass type by interchanging components R and C.  

Similarly, a second-order high-pass filter is obtained from a second-order low-pass filter if R and 

C are interchanged, and so on. Figure 8-6 shows a first-order high- pass Butterworth filter with a 

low cutoff frequency of fL.  

This is the frequency at which the magnitude of the gain is 0.707 times its passband value. 

Obviously, all frequencies higher than fL are passband frequencies, with the highest frequency 

determined by the closed-loop bandwidth of the op-amp.  

Note that the high-pass filter of Figure 8-6(a) and the low-pass filter of Figure 8-2(a) are the 

same circuits, except that the frequency-determining components (R and C) are interchanged.  

For the first-order high-pass filter of Figure 8-6(a), the output voltage is  

 



 

 

Hence the magnitude of the voltage gain is  

 

Since high-pass filters are formed from low-pass filters simply by interchanging R’s and C’s, the 

design and frequency scaling procedures of the low-pass filters are also applicable to the high-

pass filters.  

SECOND-ORDER HIGH-PASS BUTTERWORTH FILTER  

As in the case of the first-order filter, a second-order high-pass filter can be formed from a 

second-order low-pass filter simply by interchanging the frequency-determining resistors and 

capacitors. Figure 8-8(a) shows the second-order high-pass filter.  

 



The voltage gain magnitude equation of the second-order high-pass filter is as follows:  

 
Where AF = 1.586 = passband gain for the second-order Butterworth response 

              f = frequency of the input signal (Hz)  

             fL = low cutoff frequency (Hz)  

 

Since second-order low-pass and high-pass filters are the same circuits except that the positions 

of resistors and capacitors are interchanged, the design and frequency scaling procedures for the 

high-pass filter are the same as those for the low-pass filter.  

 

BAND-PASS FILTERS  

A band-pass filter has a passband between two cutoff frequencies fH and fL such that fH> fL. 

Any input frequency outside this passband is attenuated.  

Basically, there are two types of band-pass filters:  

(1) Wide band pass, and  

(2) Narrow band pass.  

Unfortunately, there is no set dividing line between the two. However, we will define a filter as 

wide band pass if its figure of merit or quality factor Q<10.On the other hand, if we will call the 

filter a narrow band-pass filter. Thus Q is a measure of selectivity, meaning the higher the value 

Q, the more selective is the filter or the narrower its bandwidth (BW). The relationship between 

Q, the 3-dB bandwidth, and the center frequency fc is given by  

 
For the wide band-pass filter the center frequency fc can be defined as 

 
where fH = high cutoff frequency (Hz)  

fL = low cutoff frequency of the wide band-pass filter (Hz)  

In a narrow band-pass filter, the output voltage peaks at the center frequency.  

 

Wide band-pass filter 

A wide band-pass filter can be formed by simply cascading high-pass and low-pass sections and 

is generally the choice for simplicity of design and performance.  

To obtain ±20dB/decade band-pass, first-order high pass and first order low-pass  

sections are cascaded; for a ±40-dB/decade band-pass filter, second-order high- pass and second-

order low-pass sections are connected in series.  



The order of the band-pass filter depends on the order of the high- pass and low-pass filter  

sections.  

 

Figure 8-11 shows the ±20-dB/decade wide band-pass filter, which is composed of first-order 

high-pass and first-order low-pass filters. To realize a band- pass response, however, fH must be 

larger than fL.  

 

 
 

 

Since the band-pass gain is 4, the gain of the high-pass as well as low-pass sections could be set 

equal to 2. That is, input and feedback resistors must be equal in value, say 10 kΩ each. The 

complete band-pass filter is shown in Figure 8-11(a).  

(b) The voltage gain magnitude of the band-pass filter is equal to the product of the voltage gain 

magnitudes of the high-pass and low-pass filters. Therefore, from Equations (8-2a) and (8-6),  



         

 

where AFT = total passband gain  

               f = frequency of the input signal (Hz)  

             fL = low cutoff frequency (Hz)  

             fH = high cutoff frequency (Hz)  

Narrow Band-Pass Filter  

The narrow band-pass filter using multiple feedback is shown in Figure 8-13. As shown in this 

figure, the filter uses only one op-amp. Compared to all the filters discussed so far, this filter is 

unique in the following respects:  

1. It has two feedback paths, hence the name multiple-feedback filter.  

2. The op-amp is used in the inverting mode. :  

 

 



 

 

 

 

Generally, the narrow band-pass filter is designed for specific values of center frequency fc and 

Q or fc and bandwidth. The circuit components are determined from the following relationships.  

To simplify the design calculations, choose C1 = C2 = C.  

             

Where AF is the gain at fc , given by     

 

The gain AF, however, must satisfy the condition 

 

Another advantage of the multiple feedback filter of Figure 8-13 is that its center frequency fc 

can be changed to a new frequency f’c without changing the gain or bandwidth. This is 

accomplished simply by changing  R2 to R’2 so that  

 
 

 



BA ND-REJECT FILTERS  
The band-reject filter is also called a band-stop or band-elimination filter. In this filter, 

frequencies are attenuated in the stopband while they are passed outside this band, as shown in 

Figure 8-1(d).  

As with band-pass filters, the band-reject filters can also be classified as (1) wide band-reject or 

(2) narrow band-reject. The narrow band-reject filter is commonly called the notch filter. 

Because of its higher Q (>10), the bandwidth of the narrow band-reject filter is much smaller 

than that of the wide band-reject filter.  

Wide Band-Reject Filter  
Figure 8-14(a) shows a wide band-reject filter using a low-pass filter, a high-pass filter, and a 

summing amplifier. To realize a band-reject response, the low cutoff frequency fL of the high-

pass filter must be larger than the high cutoff frequency fH of the low-pass filter. In addition, the 

passband gain of both the high-pass and low-pass sections must be equal. The frequency 

response of the wide band-reject filter is shown in Figure 8-14(b).  

 
 



 
 

Narrow Band-Reject Filter  

The narrow band-reject filter, often called the notch filter, is commonly used for the rejection of 

a single frequency such as the 60-Hz power line frequency hum. The most commonly used notch 

filter is the twin-T network shown in Figure 8-15(a). This is a passive filter composed of two T-

shaped networks. One T network is made up of two resistors and a capacitor, while the other 

uses two capacitors and a resistor. The notch-out frequency is the frequency at which maximum 

attenuation occurs; it is given by  

 

 



 

 

ALL-PASS FILTER 

As the name suggests, an all-pass filter passes all frequency components of the input signal 

without attenuation, while providing predictable phase shifts for different frequencies of the 

input signal. When signals are transmitted over transmission lines, such as telephone wires, they 

undergo change in phase. To compensate for these phase changes, all-pass filters are required. 

The all-pass filters are also called delay equalizers or phase correctors. Figure 8-16(a) shows an 

all- pass filter wherein RF = R1. The output voltage Vo of the filter can be obtained by using the 

superposition theorem:  

 

 
 



 
 

But -j = 1/j and XC = 1/2∏fC. Therefore, substituting for XC and simplifying, we get  

 

 

Where f is the frequency of the input signal in hertz.  

Equation indicates that the amplitude of Vo/Vin is unity; that is, |Vo|=|Vin| throughout the useful 

frequency range, and the phase shift between Vo and Vin is a function of input frequency f. The 

phase angle φ is given by  

 

 

Where φ is in degrees, in hertz, R in ohms, and C in farads. Equation is used to find the phase 

angle φ if f, R, and C are known. Figure 8-16(b) shows a phase shift of 90° between the input 

Vin and output Vo. That is, Vo lags Vin by 90°. For fixed values of R and C, the phase angle φ 

changes from 0 to 180°as the frequency f is varied from 0 to ∞. In Figure 8-16(a), if the positions 

of R and C are interchanged, the phase shift between input and output becomes positive. That is, 

output Vo leads input Vin.  



OSCILLATORS  

The use of op-amps as oscillators capable of generating a variety of output waveforms. Basically, 

the function of an oscillator is to generate alternating current or voltage waveforms. More 

precisely, an oscillator is a circuit that generates a repetitive waveform of fixed amplitude and 

frequency without any external input signal. Oscillators are used in radio, television, computers, 

and communications. Although there are different types of oscillators, they all work on the same 

basic principle.  

Oscillator Principles  

An oscillator is a type of feedback amplifier in which part of the output is fed back to the input 

via a feedback circuit. If the signal fed back is of proper magnitude and phase, the circuit 

produces alternating currents or voltages. To visualize the requirements of an oscillator, consider 

the block diagram of Figure 8-17.  

However, here the input voltage is zero (Vin = 0). Also, the feedback is positive because most 

oscillators use positive feedback. Finally, the closed- loop gain of the amplifier is denoted by Av 

rather than AF.  

 

 

Using these relationships, the following equation is obtained:  

 
   



However, Vin = 0 and Vo≠0 implies that AvB=1 

Expressed in polar form, 

 

Equation gives the two requirements for oscillation: 

(1) The magnitude of the loop gain AvB must be at least 1,and  

(2) The total phase shift of the loop gain AvB  must be equal to 0°or 360°.  

If the amplifier uses a phase shift of 180°, the feedback circuit must provide an additional phase 

shift of 180° so that the total phase shift around the loop is 360°. The waveforms shown in 

Figure 8-17 are sinusoidal and are used to illustrate the circuit’s action. The type of waveform 

generated by an oscillator depends on the components in the circuit and hence may be 

sinusoidal, square, or triangular; In addition, the frequency of oscillation is determined by the 

components in the feedback circuit.  

 

 

PHASE SHIFT OSCILLATOR  

Figure 8-18 shows a phase shift oscillator, which consists of an op-amp as the amplifying stage 

and three RC cascaded networks as the feedback circuit. The feedback circuit provides feedback 

voltage from the output back to the input of the amplifier. The op-amp is used in the inverting 

mode; therefore, any signal that appears at the inverting terminal is shifted by 180° at the output. 

An additional 180° phase shift required for oscillation is provided by the cascaded RC networks. 

Thus the total phase shift around the loop is 360° (or 0°). At some specific frequency when the 

phase shift of the cascaded RC networks is exactly 180°and the gain of the amplifier is 

sufficiently large, the circuit will oscillate at that frequency. This frequency is called the 

frequency of oscillation fo and is given by  



 

At this frequency, the gain Av must be at least 29. That is,  

    or      

 
 

 

 

 

 



 

WIEN BRIDGE OSCILLATOR  

Because of its simplicity and stability, one of the most commonly used audio- frequency 

oscillators is the Wien bridge. Figure 8-19 shows the Wien bridge oscillator in which the Wien 

bridge circuit is connected between the amplifier input terminals and the output terminal. The 

bridge has a series RC network in one arm and a parallel RC network in the adjoining arm. In the 

remaining two arms of the bridge, resistors R1 and RF, are connected.  

The phase angle criterion for oscillation is that the total phase shift around the circuit must be 0
0
. 

This condition occurs only when the bridge is balanced, that is, at resonance. The frequency of 

oscillation f0 is exactly the resonant frequency of the balanced Wien bridge and is given by  

 

 
 

Assuming that the resistors are equal in value, and capacitors are equal in value in the reactive 

leg of the Wien bridge. At this frequency the gain required for sustained oscillation is given by  

 
 



QUADRATURE OSCILLATOR  

As its name implies, the quadrature oscillator generates two signals (sine and cosine) that are in 

quadrature, that is, out of phase by 90
0
. Although the actual location of the sine and cosine is 

arbitrary, in the quadrature oscillator of Figure 8-20 the output of A1 is labeled a sine and the 

output of A2 is a cosine. This oscillator requires a dual op-amp and three RC combinations. The 

first op-amp A1 is operating in the non-inverting mode and appears as a non-inverting integrator. 

The second op-amp A2 is working as a pure integrator. Furthermore, A2 is followed by a voltage 

divider consisting of R3 and C3. The divider network forms a feedback circuit, whereas A1 and 

A2 form the amplifier stage. 

 

 

The total phase shift of 360° around the loop required for oscillation is obtained in the following 

way. The op-amp A2 is a pure integrator and inverter. Hence it contributes -270° or (90
0
) of 

phase shift. The remaining -90° (or 270
0
) of phase shift needed are obtained at the voltage 

divider R3C3 and the op-amp A1. The total phase shift of 360
0
, however, is obtained at only one 

frequericyf0, called the frequency of oscillation. This frequency is given by  

 

Where R1C1 = R2C2 = R3C3 = RC. At this frequency,  



 
This is the second condition for oscillation.  

Thus, to design a quadrature oscillator for a desired frequency f0, choose a value of C; then, from 

Equation, calculate the value of R. To simplify design calculations, choose C1 = C2 = C3 and  

R1 = R2 = R3. In addition, R1 may be a potentiometer in order to eliminate any possible 

distortion in the output waveforms.  

 

SQUARE WAVE GENERATOR  

In contrast to sine wave oscillators, square wave outputs are generated when the op-amp is 

forced to operate in the saturated region. That is, the output of the op-amp is forced to swing 

repetitively between positive saturation + Vsat ( ≈ + VCC) and negative saturation –Vsat(≈ + VEE), 

resulting in the square-wave output.  

One such circuit is shown in Figure 8-21(a). This square wave generator is also called a free-

running or astable multivibrator. The output of the op-amp in this circuit will be in positive or 

negative saturation, depending on whether the differential voltage vid is negative or positive, 

respectively.  

Assume that the voltage across capacitor C is zero volts at the instant the dc supply voltages 

 + VCC and -VEE are applied. This means that the voltage at the inverting terminal is zero 

initially. At the same instant, however, the voltage V1 at the non-inverting terminal is a very 

small finite value that is a function of the output offset voltage VOOT and the values of R1 and R2 

resistors. Thus the differential input voltage Vid is equal to the voltage V1 at the non-inverting 

terminal. Although very small, voltage V1 will start to drive the op-amp into saturation.  

 



 

For example, suppose that the output offset voltage VOOT is positive and that, therefore, voltage 

V1 is also positive. Since initially the capacitor C acts as a short circuit, the gain of the op-amp is 

very large (A); hence V1 drives the output of the op-amp to its positive saturation + Vsat. With 

the output voltage of the op-amp at + Vsat , the capacitor C starts charging toward + Vsat through 

resistor R. However, as soon as the voltage V2 across capacitor C is slightly more positive than 

V1, the output of the op-amp is forced to switch to a negative saturation, - Vsat. With the op-

amp’s output voltage at negative saturation, -Vsat, the voltage v1 across R1 is also negative, 

since  

 

Thus the net differential voltage Vid =V1-V2 is negative, which holds the output of the op-amp 

in negative saturation. The output remains in negative saturation until the capacitor C discharges 

and then recharges to a negative voltage slightly higher than -V1. Now, as soon as the capacitor’s 

voltage V2 becomes more negative than –V1, the net differential voltage Vid becomes positive 

and hence drives the output of the op-amp back to its positive saturation + Vsat. This completes 

one cycle. With output at + Vsat, voltage V1 at the non-inverting input is  

 

The time period T of the output waveform is given by  



 

Equation   indicates that the frequency of the output f0 is not only a function of the RC time 

constant but also of the relationship between R1 and R2. For example, if  R2 = 1. 16R1, Equation   

becomes  

 

  

 

 

TRIANGULAR WAVE GENERATOR  

 

Recall that the output waveform of the integrator is triangular if its input is a square wave. This 

means that a triangular wave generator can be formed by simply connecting an integrator to the 

square wave generator. The resultant circuit is shown in Figure 8-22(a). This circuit requires a 

dual op-amp, two capacitors, and at least five resistors.  

The frequencies of the square wave and triangular wave are the same. For fixed R1, R2, and C 

values, the frequency of the square wave as well as the triangular wave depends on the resistance 

R.  

As R is increased or decreased, the frequency of the triangular wave will decrease or increase, 

respectively. Although the amplitude of the square wave is constant (±Vsat); the amplitude of the 

triangular wave decreases with an increase in its frequency, and vice versa. The input of 

integrator A2 is a square wave, while its output is a triangular wave.  

 

However, for the output of A2 to be a triangular wave requires that 5R3C2> T/2, where T is the 

period of the square wave input.  

As a general rule,  



 

R3C2 should be equal to T. To obtain a stable triangular wave, it may also be necessary to shunt 

the capacitor C2 with resistance R4 = 10R3 and connect an offset voltage-compensating network 

at the non-inverting terminal of A2.  

Another triangular wave generator, which requires fewer components, is shown in Figure 8-

23(a). The generator consists of a comparator A1, and an integrator A2. The comparator A1, 

compares the voltage at point P continuously with the inverting input that is at 0 V. When the 

voltage at P goes slightly below or above 0 V. the output of A1 is at the negative or positive 

saturation level, respectively.  



 

To illustrate the circuit’s operation, let us set the output of A, at positive saturation + V ( + Vc). 

This + V is an input of the integrator A2. The outp ut of A2, therefore, will be a negative-going 

ramp. Thus one end of the voltage- divider R—R3 is the positive saturation voltage + V of A, 

and the other is the negative-going ramp of A2. When the negative-going ramp attains a certain 

value VRanip, point P is slightly below 0 V; hence the output of A1 will switch from  

positive saturation to negative saturation — — VIE). This means that the  

output of A2 will now stop going negatively and will begin to go positively. The out put of A2 

will continue to increase until it reaches + At this time the point P is slightly above 0 V; 

therefore, the output of A, is switched back to the positive saturation level + V. The sequence 

then repeats. The out put wavef orm is as shown in Figure 8-23(b).  



The frequencies of the square wave and the triangular wave are the same. The amplitude of the 

square wave is a function of the dc supply voltages. Howe ver, a desired amplitude can be 

obtained by using appropriate zeners at the output of A1. ISee Figure 8-23(a).1  

The amplitude and the frequency of the triangular wave can be determined as follows: From 

Figure 8-23(b), when the output of the comparator A1 is + V,, the output of the integritor A2 

steadily decreases until it reaches — Vrn,. At this time the output of A1 switches from + V to — 

V. Just before this switching occurs, the voltage at point P (+input) is 0 V. This means that the 

— VRamp must bC developed across R2, and ÷ Vsat must be developed across R3. That is,  

 

Similarly, + Vj,, the output voltage of A2 at which the output of A1 switches from —V to+V,, is 

given by  

 

Thus, from Equations (8-28a) and (8-28b), the peak-to-peak (pp) output amplitude of the 

triangular wave is  

 

where V = f+v = IVsaII. Equation (8-29) indicates that the amplitude of the triangular wave 

decreaseswithanincreaseinR3.  

The time it takes for the output waveform to swing from — to + (or from + Vmp to — VRamp) 

is equal to half the time period T/2. [Sce Figure 8-23(b).] This time can be calculated from the 

integrator output equation, (7-23), by substituting u, = — V, v0 = u0(pp), and C = 0. 

 



 

where Vsat = H1’saiP = IVsatI. Substituting the value of u0(pp) from Equation (8-29), the time 

period of the triangular wave is  

 

The frequency of oscillation then is  

 
 

SAWTOOTH WAVE GENERATOR  

The difference between the triangular and sawtooth waveforms is that the rise time of the 

triangular wave is always equal to its fall time. That is, the same amount of time is required for 

the triangular wave to swing from -Vramp to +Vramp as from +Vramp to -Vramp. On the other 

hand, the sawtooth waveform has unequal rise and fall times. That is, it may rise positively many 

times faster than it falls negatively, or vice versa.  

The triangular wave generator of Figure 8-23(a) can be converted into a sawtooth wave generator 

by injecting a variable dc voltage into the non-inverting terminal of the integrator A2. This can 

be accomplished by using the potentiometer and connecting it to the +VCC and  

-VEE as shown in Figure 8-24(a).  

Depending on the R4 setting, a certain dc level is inserted in the output of A2. Now, suppose that 

the output of A1 is a square wave and the potentiometer R4 is adjusted for a certain dc level. 

This means that the output of A2 will be a triangular wave, riding on some dc level that is a 

function of the R4 setting. The duty cycle of the square wave will be determined by the polarity 

and amplitude of this dc level. A duty cycle less than 50% will then cause the output of A2 to be 

a sawtooth. 

 



 

[See Figure 8-24(b).] With the wiper at the center of R4, the output of A2 is a triangular wave. 

For any other position of R4 wiper, the output is a sawtooth waveform. Specifically as the R4 

wiper is moved toward —V, the rise time of the sawtooth wave becomes longer than the fall 

time, as shown in Figure S-24(b). On the other hand, as the wiper is moved toward +Vcc, the fall 

time becomes longer than the rise time. Also, the freq uency of the sawtooth wave decreases as 

R4 is adjusted toward + V or — VEE. However, the amplitude of the sawtooth wave is 

independent of the R4 setting.  

 


